Total Citations (as of February 1, 2020): 1178
                                                                                                                                                                 h-Index: 21; i-10 index: 33
                                                                                                                                                                                    *Corresponding author



59. Designing biomimicking synthetic transcription factors for therapeutic gene modulation.  

Ganesh N. Pandian* and H. Sugiyama*. BOOK CHAPTER in Cell-inspired Materials and Engineering (In press).

58. A synthetic transcription factor mimic for precise recruitment of an epigenetic modifier to the targeted DNA locus.  

Z. Yu, M.Ai, S. Samanta, F. Hashiya, J. Taniguchi, S. Asamitsu, S. Ikeda, K. Hashiya, T. Bando, Ganesh N. Pandian*, L. D. Isaacs* and H. Sugiyama*. 2020, Chem. Commun. In press

57. Targeted suppression of metastasis regulatory transcription factor SOX2 in various cancer cell lines using a sequence-specific designer pyrrole–imidazole polyamide  

M. Malinee, A. Kumar, T. Hidaka, M. Horie, K. Hasegawa, Ganesh N. Pandian* and H. Sugiyama*. 2020, Bioorg. Med. Chem. 28, 115248.

56. Therapeutic gene regulation using pyrrole-imidazole polyamides.  
Z. Yu, Ganesh N. Pandian*, T. Hidaka and H. Sugiyama*. 2019, Adv. Drug Deliv. Rev. 147, 66-85 (FRONT COVER).

55. Chemical control system of epigenetics.  
T. Vaijayanthi, Ganesh N. Pandian* and H. Sugiyama*. 2018, Chem.Rec. 18, 1-22.

54. Direct observation of H3-H4 octasome by high-speed AFM. 

T. Zou, F. Hashiya, Y. Wei, Z. Yu,  Ganesh N. Pandian, H Sugiyama. 2018, Chem. Eur. J. 24, 15998-16002.

53. Colloidal stability of lipid/protein-coated nanomaterials in salt and sucrose solutions.   
T. Nobeyama, M. Mori, K. Shiyou, Ganesh N. Pandian, H. Sugiyama, T. Murakami. 2018, ChemistrySelect 3, 8325-8331.

52. Biomimetic artificial epigenetic code for targeted acetylation of histones. 
J. Taniguchi, Y. Feng#, Ganesh N. Pandian#, F. Hashiya, T. Hidaka, K. Hashiya, S. Park, T. Bando, S. Ito and H. Sugiyama.2018, J. Am. Chem. Soc. 140, 7108-7115. (INSIDE COVER) Got extensive Media coverage > 30 Science Portals and Highlighted as Editor's Choice in Asia Research News

51. Synthetic DNA-binding inhibitor of HES1 alters the Notch signalling pathway and induces neuronal differentiation. 
Y. Wei, Ganesh N. Pandian*, Z. Yu, T. Zou, Y. Li, J. Darokar, K. Hashiya, T. Bando, K. Kim and H. Sugiyama*. 2018, ACS Omega. 3, 3608-3616. 

50.  A synthetic DNA-binding inhibitor of SOX2 guides human induced pluripotent stem cells to differentiate into cardiac mesoderm. 
J. Taniguchi, Ganesh N. Pandian, T. Hidaka, K. Hashiya, T. Bando, K. Kim and H. Sugiyama. 2017, Nucleic Acids Res. 45, 9219-9228. Got extensive Media coverage > 20 Science Portals and Highlighted in Asian Scientist.

49.  Creation of a synthetic ligand for mitochondrial DNA sequence recognition and promoter-specific transcription suppression.  
T. Hidaka, Ganesh N. Pandian,* J. Taniguchi, T. Nobeyama, K. Hashiya, T. Bando and H. Sugiyama*. 2017, J. Am. Chem. Soc. 139, 8444-8447. 
(FRONT COVER and JACS SPOTLIGHT ARTICLE) Got extensive Media coverage > 30 Science Portals and Highlighted in ACS Chemical and Engineering News, `Designer molecule silences mitochondrial genes` Volume 95 Issue 30 | p. 7 | Issue Date: July 24, 2017

48.  Antiproliferative and apoptotic activities of sequence-specific histone acetyltransferase inhibitor. 
Z. Yu, J. Taniguchi, Y. Wei,  Ganesh N. Pandian, K. Hashiya, T. Bando and H. Sugiyama. 2017, Eur. J. Med. Chem. 138, 320-327.

 ​47.  Low-temperature carbonization of chicken manure to char and its effect on the growth of Oryza sativa L. Koshihikari and Brassica rapa komatsuna. 
T. Ishimori, Y. Takahashi, H. Sato, A. Hassan, Y. Iwamoto Ganesh N. Pandian and H. Hori. 2017, Euro-Mediterr. J. Environ. Integr. 2, 10. doi:10.1007/s41207-017-0020-2

46.  Red fluorescent gut proteins in the mulberry silkworm with immunomodulatory properties.
 Ganesh N. Pandian, T. Vaijayanthi and H. Hori. 2016, Trends in Entomology 12, 91-106

45.  A multi-target small molecule for targeted transcriptional activation of therapeutically significant nervous system genes.
Y. Wei, Ganesh N. Pandian, T. Zou, J. Taniguchi, S. Sato, G. Kashiwazaki, T. Bando and H. Sugiyama. 2016, ChemistryOpen 5, 517-521. 

​44.  Nature-inspired design of smart biomaterials using the chemical biology of nucleic acids.
Ganesh N. Pandian, H Sugiyama. 2016, Bull. Chem. Soc. J. 89, 843-868. 
43.  Nucleosome assembly alters the accessibility of the antitumor agent duocarmycin B2 to duplex DNA.
T. Zou, S. Kizaki,  Ganesh N. Pandian, H Sugiyama. 2016, Chem. Eur. J. 22, 8756-8758. 

42. A synthetic DNA-binding domain guides distinct chromatin-modifying small molecules to activate an identical gene network.
L. Han#, Ganesh N. Pandian#, A. Chandran, S. Sato, J. Taniguchi, G. Kashiwazaki, Y. Sawatani, K. Hashiya, T. Bando, Y. Xu, X. Qian and H. Sugiyama. 2015, Angew. Chem. Int. Ed. 54, 8700-8703. #Equal authorship.

41. A synthetic transcriptional activator of genes associated with the retina in human dermal fibroblasts.
J. Syed, A. Chandran,  Ganesh N. Pandian, J. Taniguchi, S. Sato, K. Hashiya, G. Kashiwazaki, T. Bando, H Sugiyama. 2015.  ChemBioChem 16 (10), 1497-1501.
40. Integrating epigenetic modulators into NanoScript for enhanced chondrogenesis of stem cells.
S. Patel, T. Pongkulapa, PT, Yin, Ganesh N. Pandian, C. Rathnam, T. Bando, T. Vaijayanthi, H Sugiyama, K-B Lee. 2015. J. Am. Chem. Soc. 137 (14), 4598-4601.
39. Synthetic strategies to identify and regulate noncoding RNAs.
Ganesh N. Pandian, J. Syed, H. Sugiyama. 2015. Long Noncoding RNAs: Structure and Function (23-43).
38. Advancing small-molecule-based chemical biology with next-generation sequencing technologies.
C. Anandhakumar, S. Kizaki, T. Bando, Ganesh N. Pandian, H. Sugiyama. 2015. ChemBioChem 16 (1), 20-38.
37. Next-generation sequencing studies guide the design of pyrrole-imidazole polyamides with improved binding specificity by the addition of β-alanine.
C. Anandhakumar, Y. Li, S. Kizaki, Ganesh N. Pandian, K. Hashiya, T. Bando, H. Sugiyama. 2014. ChemBioChem 15 (18), 2647-2651.
36. Identification of a small molecule that turns `ON` the pluripotency gene circuitry in human fibroblasts.
Ganesh N. Pandian, S. Sato, C. Anandhakumar, J. Taniguchi, K. Takashima, J. Syed, L. Han, A. Saha, T. Bando, H. Nagase, H. Sugiyama. 2014. ACS Chem. Biol. 9 (12), 2729-2736.
35. Targeted Suppression of EVI1 Oncogene Expression by Sequence-Specific Pyrrole-Imidazole Polyamide Mouse Fibroblast.
J. Syed, Ganesh N Pandian, S. Sato, J. Taniguchi, C. Anandhakumar, K. Hashiya, T. Bando and H. Sugiyama. 2014. Chem. Biol. (Cell Press) 21 (10), 1370-1380.
34. Chemically modified synthetic small molecule boosts its biological efficacy against pluripotency genes in mouse fibroblast.
A. Saha, Ganesh N Pandian, S. Sato, J. Taniguchi, Y. Kawamoto, K. Hashiya, T. Bando and H. Sugiyama. 2014. ChemMedChem. 9, 2374-2380.
33. Alteration of epigenetic program to recover memory and alleviate neurodegeneration: Prospects of multi-target molecules. (COVER ARTICLE).
Ganesh N Pandian, R. D. Taylor, S. Junetha, C. Anandhakumar, A. Saha, T. Vaijayanthi and H. Sugiyama. 2014, Biomater. Sci. 2, 1043-1056.
32. Targeted editing of therapeutic genes using DNA-based transcriptional activators: Scope and challenges.
Ganesh N Pandian and H. Sugiyama, Book chapter (pp347-365) in Chemical Biology of Nucleic Acids: Fundamentals and Clinical Applications ed. by Volker A. Erdmann, Wojciech T. Markiewicz, and Jan Barciszewski.
31. Cellular reprogramming for pancreatic beta cell regeneration: clinical potential of small molecule control.
Ganesh N. Pandian, J. Taniguchi, and H. Sugiyama. 2014, Clin. Transl. Med., 3, 6.
30. Distinct DNA-based epigenetic switches trigger transcriptional activation of silent genes in human dermal fibroblasts.
Ganesh N. Pandian, J. Taniguchi, S. Junetha, S. Sato, C. Anandhakumar, A. Saha, T. Bando, H. Nagase, and H. Sugiyama.  2014, Sci. Rep. (Nature Publishing Group). 4, e3843.

Genetic Engineering and Biotechnology News "Install epigenetic switches to give silent genes a voice" (January 31, 2014, Web, English)
Azonano "iCeMS researchers design DNA-based molecule set for controlling cellular biological networks" (January 27, 2014, Web, English)
Nikkan Kougyo Shimbun "Kyoto University: Controlling cellular gene expression with man-made switches" (February 3, 2014, Page 17, Japanese)
GEN News "Gene switches activate sleeping DNA」(January 31, 2014, Web, Japanese)
My Navi News | Yahoo!Japan News "Kyoto University researchers successfully control gene expression by targeting DNA with synthetic compounds" (January 28, 2014, Japanese)「iCeMS Researchers develop DNA-based compound to control DNA expression」(January 27, 2014, Web, Japanese)
Asahi Shimbun「Kyoto University group successfully develops DNA switch」(January 25, 2014, Page 8, Japanese)
Chunichi Shimbun "Targeting iPS genes, Kyoto University develops compound that mimics cellular functions" (January 25, 2014, Page 3, Japanese)
Kyoto Shimbun "Kyoto University group successfully targets and controls genes"(January 25, 2014, Page 28, Japanese)
Nihon Kezai Shimbun "Kyoto University makes compound that wakes up dormant genes, potential use for iPS"(January 25, 2014, Page 42, Japanese)
Sankei Shimbun "Kyoto University team develops compound to make iPS-like cells from skin"(January 25, 2014, Page 28, Japanese)
Yomiuri Shimbun "Specifically turning on gene switches with compounds" (January 25, 2014, Page 34, Japanese)
47 News "Kyoto University team develops compound to turn skin cells into an iPS-like state"(January 24, 2014, Japanese)
29. A synthetic small molecule for targeted transcriptional activation of germ cell genes in a human somatic cell (Selected as a HOT PAPER).
L. Han#, Ganesh N. Pandian#, S. Junetha, S. Sato, C. Anandhakumar, J. Taniguchi, A. Saha, T. Bando, H. Nagase, and H. Sugiyama. 2013, Angew. Chem. Int. Ed. 52, 13410-13413. #Equal authorship.
28. Clinical-Grade iPS Cells: Need For versatile small molecules and optimal cell sources.
Y -L. Wu#, Ganesh N. Pandian#, Y-P. Ding, W. Zhang, Y. Tanaka and H. Sugiyama, 2013, Chem. Biol. (Cell Press, Featured Review) 20, 1311-1322.  #Equal authorship.
27. Chemically induced pluripotent stem cells (CiPSCs): A transgene-free approach.
S. Masuda, J. Wu, T. Hishida, Ganesh N. Pandian, H. Sugiyama, J. C. Belmonte, 2013, J. Mol. Cell Biol. 5, 354-355.
26. Design of a new fluorescent probe: Pyrrole/Imidazole hairpin polyamides with pyrene conjugation at their γ-turn.
T. Vaijayanthi, T. Bando, K. Hashiya, Ganesh N. Pandian and H, Sugiyama. 2013, Bioorg. Med. Chem. 21, 852-855.
25. Synthesis and biological evaluation of a targeted DNA-binding transcriptional activator with HDAC8 inhibitory activity.
A. Saha, Ganesh N. Pandian, S. Sato, J. Taniguchi,  K. Hashiya, T. Bando and H, Sugiyama. 2013, Bioorg. Med. Chem. 21, 4201-4209.
24. Strategies to modulate heritable epigenetic defects in cellular machinery: Lessons from nature.
Ganesh N Pandian and H.Sugiyama. 2013, Pharmaceuticals 6, 1-24.
23. A synthetic small molecule for rapid induction of multiple pluripotency genes in mouse embryonic fibroblast.
Ganesh N. Pandian, Y. Nakano, S. Sato, H. Morinaga, T. Bando, H. Nagase and H. Sugiyama. 2012, Sci. Rep. (Nature Publishing Group). 2, e544. (Highlighted article in Stem Cell Journal).

22. Progress and prospects of pyrrole-imidazole polyamide-fluorophore conjugate as sequence-selective DNA probes.
T. Vaijayanthi, T. Bando, Ganesh N. Pandian and H. Sugiyama. 2012, ChemBioChem. 13, 2170-2185.
21. Synthesis and biological properties of highly sequence-specific-alkylating N-Methylpyrrole–N-Methylimidazole polyamide conjugates.
G. Kashiwazaki, T. Bando, T. Yoshidome, S. Masui, T. Takagaki, K. Hashiya, Ganesh N. Pandian, J. Yasuoka, K. Akiyoshi and H. Sugiyama. 2012, J. Med. Chem. 55, 2057-2066.
20. Development of programmable small DNA-binding molecules with epigenetic activity for induction of core pluripotency genes.
Ganesh N. Pandian, A. Ohtsuki, T. Bando, S. Sato, K. Hashiya, H. Sugiyama, 2012, Bioorg. Med. Chem. 20, 2656-2660.
19. Programmable genetic switches to control transcriptional machinery of pluripotency.
Ganesh N. Pandian and H. Sugiyama. 2012, Biotechnol. J. 7, 798-809.
18. Synthetic small molecules for epigenetic activation of pluripotent genes in mouse embryonic fibroblasts.
Ganesh N. Pandian, K. Shinohara, A. Ohtsuki, Y. Nakano, Y. Yamada, A. Watanabe, N. Terada, S. Sato, H. Morinaga and H. Sugiyama. 2011, ChemBioChem. 12 (18), 2822-2828.
17. Depletion of 14-3-3 protein exacerbates cardiac oxidative stress, inflammation and remodeling process via modulation of MAPK/NF-ĸB signaling pathways after streptozotocin-induced Diabetes mellitus.
R. A Thandavarayan, V. V Giridharan, F. R. Sari, S. Arumugam, P.T. Veeraveedu, Ganesh N Pandian, S. S Palaniyandi, M. Ma, K. Suzuki, N. Guruswamy and K. Watanabe. 2011, Cell. Physiol. Biochem. 28(5), 911-922.
16. Midgut juice of Bacillus thuringiensis Cry1Ac resistant Plutella xylostella contains a three‐fold amount of Glucosinolate Sulfatase than the susceptible strain.
T. Yamazaki, T. Ishikawa, Ganesh N. Pandian, K. Okazaki, Y. Tachikawa, T. Mitsui, C. Angusthanasombat and H. Hori. 2011, Pest. Biochem. Physiol. 101, 125-131.
15. Formation of macromolecule complex with Bacillus thuringiensis Cry1A toxins and chlorophyllide-binding 252-kDa lipocalin like protein locating on Bombyx mori midgut membrane.
Ganesh N. Pandian, T. Ishikawa, T. Vaijayanthi, D. M. Hossain, S. Yamamoto, T. Nishiumi, C. Angusthanasombat and H. Hori. 2010, J. Membr. Biol. 237(2-3), 125-136.
14. Investigation of physicochemical condition to stabilize phosphatidylcholine-liposome enclosing fluorescent calcein and its exploitation for analysis of pore formation with Cry1A toxins of Bacillus thuringiensis.
K. Haginoya, V. Thangavel, Ganesh N. Pandian, K. Tomimoto, Y. Shitomi, C. Angsuthanasombat and H. Hori. 2010, Appl. Entomol. Zool. 45 (3), 477–488.
13. Novel applications of silicon and porous silicon based EISCAP biosensors.
A. Mathew, Ganesh Pandian, A. Chadha, E. Bhattacharya. 2009, Phys. Status Solidi A, 206, 1369-1373.
12. Bombyx mori midgut membrane protein P252, which binds to Bacillus thuringiensis Cry1A, is a chlorophyllide-binding protein, and their resulting complex has antimicrobial activity.
Ganesh N. Pandian, T. Ishikawa, M. Togashi, Y. Shitomi, K. Haginoya, S. Yamamoto, T. Nishiumi and H. Hori. 2008, Appl. Environ. Microbiol. 74 (5), 1324-1331.
11. Deracemisation of beta-hydroxy esters using immobilized whole cells of Candida parapsilosis ATCC 7330: substrate specificity and mechanistic investigation.
S.K.Padhi, D. Titu, Ganesh N. Pandian and A. Chadha. 2006, Tetrahedron 62, 5133-5140.
10. Deracemisation of aryl substituted α-hydroxy esters using Candida parapsilosis ATCC 7330: Effect of substrate structure and mechanism.
B. Baskar, Ganesh N. Pandian, K. Priya, and A. Chadha. 2005, Tetrahedron 61, 12296-12306.
9. Biocatalytic deracemization: An efficient and simple strategy for preparation of chiral α- and β-hydroxy esters.
B. Baskar, S. K. Padhi, Ganesh N. Pandian, T. Vaijayanthi and A. Chadha. 2005. Chem. Res. Chinese U. 21, 46.
8. Preparation of chiral synthons: Biocatalytic deracemisation of aryl α-hydroxy esters.
B. Baskar, Ganesh N. Pandian K. Priya and A. Chadha. 2005. Advanced Biotech, 111(7), 12.

7. Synthesis of optically pure α-hydroxy esters: A biocatalytic approach.
S.K. Padhi, Ganesh N. Pandian and A. Chadha. 2005. Advanced Biotech, 111(7), 16.
6. Screening, characterization and application of an indigenous lipase.
K. Priya, Ganesh N. Pandian and A. Chadha. 2005, Advanced Biotech. 111 (7), 16.   
5. Microbial deracemisation of aromatic β-hydroxy acid esters.
S. K. Padhi, Ganesh N. Pandian and A. Chadha. 2004, J. Mol. Catal. B. Enzymatic. 29, 25-29.
4. Asymmetric reduction of alkyl 2-oxo-4-arylbutanoates and -but-3-enoates by Candida parapsilosis ATCC 7330: assignment of the absolute configuration of ethyl 2-hydroxy-4-(p-methylphenyl) but-3-enoate by 1H NMR.
S. K. Padhi, Ganesh N. Pandian and A. Chadha. 2004, Tetrahedron: Asymmetry. 15, 3961-3966.
3. Microbial deracemisation of β-hydroxy acid esters-An important strategy towards various chiral intermediates.
S. K. Padhi, Ganesh N. Pandian and A. Chadha. 2003, Chem. Listy 97, 479-480.
2. Characterization of a Cry1A and chlorophyllide-binding 252-kDa protein and its antimicrobial and physiological applications.
Ganesh N. Pandian, T. Ishikawa, Y. Shitomi, M. Togashi, T. Katagiri, K. Haginoya, and H. Hori. 2007, Proc. of International conference on Bacillus thuringiensis 1: 54-60.
1. Sensitive Silicon and Porous Silicon Triglyceride Biosensors.
A. Mathew, Ganesh N. Pandian, A. Chadha and E. Bhattacharya, 2005, Proc. of Intl. Workshop on Physics of Semiconductor Devices 1: 562-564.

​#Equal authorship


  • Facebook Clean Grey
  • Twitter Clean Grey
  • LinkedIn Clean Grey

© Namasivayam Group, iCeMS, Kyoto University, Japan